
Function reference
-
add_id() - Add id
-
add_multiwords() - Find multi-word expressions.
-
add_word_id() - Add word_id.
-
clean_text() - Clean text
-
confuse() - Get confusion matrix
-
cossim2dict() - Similarity of documents to a dictionary
-
detect_similar_words() - Detect similar words
-
drop_which() - Determine which similar terms to drop
-
filter_ntile() - Filter by ntile.
-
find_distinctive() - Find distinctive keywords
-
find_unique_id() - Find index of unique id in df.
-
get_ARPF() - Get Accuracy, Recall, Precision, and F1
-
get_F1() - Get F1 score for a DDR measure
-
get_combis() - Get combinations of keywords
-
get_corpus_representation() - Vector representation of a corpus.
-
get_hits() - Get occurrence frequency of words.
-
get_many_F1s() - Get F1 scores for many words or dictionaries.
-
get_many_F1s_by_group() - Get F1 for many by a grouping varialbe
-
get_many_RPFs() - Get Recall, Precision, F1 for many
-
get_prediction() - Get binary prediction
-
get_word_representations() - Get word representations.
-
normalize() - Normalize a vector
-
prepare_train_data() - Prepare text for fastText-model-training
-
remove_similar_words() - Remove too similar terms
-
repl_na() - Replace missing values.
-
simil_words2rep() - Cosine similarity between words and a given vector.
-
tw_annot - Annotated Tweets from German politicians.
-
tw_data - Tweets from German politicians.